# Test system for detection of SARS-CoV-2 (2019-nCoV) RNA in biologic substrates with Real-time RT-PCR

## **Instruction for use.**

| Σ     | Aimed for detection of SARS-CoV-2 genome fragments in biologic substrates for 50/100 tests                                                           |                |  |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|
|       | Unified format                                                                                                                                       | Unified format |  |  |  |  |
|       | Is intended for use with thermal cyclers able to detect FAM/HEX fluorescence in 20 µl samples (CFX96, Rotor-Gene etc.)  (50/100 tests with controls) |                |  |  |  |  |
| -30°C | Recommended storage temperature                                                                                                                      |                |  |  |  |  |
|       | LLC «Sivital» 210017, The Republic of Belarus, Vitebsk, Gagarin Str, 11 - 12  tel.: +375-212-23-20-07 fax: +375-212-23-14-48 e-mail: info@sivital.by |                |  |  |  |  |

Instruction for use of the test system for detection of SARS-CoV-2 strain of coronavirus in biologic substrates with RT-PCR page 2 of 9

#### Content of the test system

Table 1. Components of test system

| Label                        | Quantity (50 tests) | Quantity (100 tests) | Packing type      | Description                                                                                   |
|------------------------------|---------------------|----------------------|-------------------|-----------------------------------------------------------------------------------------------|
| PCR mixture                  | 275 μ1              | 550 µl               | Screw Cap<br>Tube | Mixture of reagents containing<br>Taq-polymerase, dNTP, PCR-<br>buffer and magnesium chloride |
| SARS-CoV-2 oligonucleotid es | 55 μl               | 110 μl               | Screw Cap<br>Tube | Mixture containing targeting primers and probes for SARS-CoV-2 and internal control           |
| Reverse transcriptase        | 44 µl               | 88 μ1                | Screw Cap<br>Tube | Mixture containing reverse transcriptase                                                      |
| SARS-CoV-2 positive control  | 100 μl              | 200 μl               | PCR-tube          | PCR-tube containing SARS-CoV-2 positive control                                               |
| Water for PCR                | 1500 μ1             | 1500 μ1              | Screw Cap<br>Tube | Cleaned water for PCR                                                                         |
|                              | 1                   | 1                    | Instruction       |                                                                                               |

## Storage conditions, stability

Components of the kit (PCR mixture, SARS-CoV-2 oligonucleotides, reverse transcriptase, SARS-CoV-2 positive control, water for PCR) must be transported on dry ice, stored in dark place at  $-20...-30^{\circ}$ C and must be placed there right after delivery. Stability of the kit is guaranteed within the whole storage period (when stored under mentioned above conditions). Reagents not included in the kit should be stored under the conditions recommended by their manufacturers.

## **Collection of samples**

For detection of SARS-CoV-2 RNA it is possible to use the following biological substrates:

- nasopharyngeal and/or oropharyngeal swabs (in the presence of respiratory tract symptoms);
- sputum or bronchoalveolar lavage (in case of tracheal intubation);
- blood plasma;
- fecal matter (in the presence of symptoms of GIT lesion).

## Reagents and equipment provided by the user

- thermal cycler for RT-PCR;
- computer with the pre-installed software of the thermal cycler for data analysis and logging;
- plastic consumables for thermal cycler;
- pipettes, sterile tips with aerosolic barrier for them;

Instruction for use of the test system for detection of SARS-CoV-2 strain of coronavirus in biologic substrates with RT-PCR page 3 of 9

- microcentrifuge suitable for 0.2 ml, 1.5 ml and 2.0 ml tubes and strips or 96-well plates;
- heating block/dry bath incubator suitable for 0.2ml, 1.5 ml and 2.0 ml tubes and 96-well plates;
- vortex;
- test-tubes of 0.2 ml, 1.5 ml and 2.0 ml;
- refrigerator from 2 to 8 °C with refrigerating chamber not higher than -18 °C;
- individual laboratory coat and disposable gloves;
- container with disinfecting solution.

For work with NA it is necessary to use only disposable plastic consumables with special marking "RNase-free", "DNase-free".



RNA is very sensitive to degradation by endogenous and exogenous RNAases that constantly present in the biological samples and environment. To achieve a satisfactory RNA output, contamination by ribonucleases should be dropped to a minimum. Avoid to work with bacterial cultures, cell cultures or other biological sources of RNAases in the same laboratory where RNA is isolated.

## The principle of the kit for SARS-CoV-2 detection

The SARS-CoV-2 detection kit is a test system based on the RT-PCR principle. The kit is developed for detection of fragments of SARS-CoV-2 genome. Positive control must be amplified along with the analyzed samples.

Table 2. Brief review of the protocol.

| 1. Perform total RNA isolation using extraction kit                                 | <b>→</b> | To perform the extraction in accordance with the manufacturer's instructions of the extraction kit                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Prepare and pour working solution of the reagent mixture into tubes, add samples |          | Prepare a reagent mixture at the rate of 12 µl in proportion to the number of analyzed samples (See also table 3).  Add 12 µl of the working solution to all wells with test samples and controls.  Add 8 µl of RNA samples to wells  Add 8 µl of SARS-CoV-2 positive control to well with positive control, 8 µl of PCR water to the negative |

Instruction for use of the test system for detection of SARS-CoV-2 strain of coronavirus in biologic substrates with RT-PCR page 4 of 9

|                                                                                 | control well.     |                                              |  |  |  |
|---------------------------------------------------------------------------------|-------------------|----------------------------------------------|--|--|--|
|                                                                                 |                   | Vortex and centrifuge for 5 s, 1,500g        |  |  |  |
| 3. Close the tubes, put<br>them in the thermal cycler,<br>set up and run RT-PCR |                   | Applied Biosystems 7300 Real-Time PCR System |  |  |  |
|                                                                                 | RNA concentration | Growth Curves of Internal                    |  |  |  |
| 4. Analysis of                                                                  | growth curves     | Sample Controls                              |  |  |  |
| fluorescence signal                                                             |                   |                                              |  |  |  |

## Universal protocol for devices supporting FAM/HEX fluorescence detection



**Important!** Include at least 1 positive control and 1 negative control (Water for PCR) in each experiment. A negative control in which amplification occurred indicates contamination of samples with exogenous genetic material. In this case, it is necessary to repeat RT-PCR using freshly prepared reagents. Such samples must be examined at least twice in a row.

In order to maintain the full activity of the reagents, all operations for dosing and mixing reagents must be performed on ice or on a special cooled surface.

Table 3. Work stages. The list and volumes ( $\mu$ l) of reagents for the preparation of the working solution of the main reagent mixture.

- 1. Defrost reagents to room temperature. Centrifuge at 1500 g for 1 minute.
- 2. Briefly centrifuge tubes with PCR mixture with maximum speed before opening, so that the content guaranteed moves from the walls of the tubes to the bottom.
  - 3. Preparation of the main reagent mixture.
- Vortex the prepared mixture for 3 seconds, then centrifuge for 5 seconds at full speed.
- It is recommended that 1-2 additional samples be added to the calculation to compensate for inaccuracies in dosing and pipetting losses.

| Number of samples           | 1   | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   | 14   |
|-----------------------------|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|
| SARS-CoV-2 oligonucleotides | 1   | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   | 14   |
| PCR mixture                 | 5   | 10   | 15   | 20   | 25   | 30   | 35   | 40   | 45   | 50   | 55   | 60   | 65   | 70   |
| Reverse transcriptase       | 0,8 | 1,6  | 2,4  | 3,2  | 4,0  | 4,8  | 5,6  | 6,4  | 7,2  | 8,0  | 8,8  | 9,6  | 10,4 | 11,2 |
| Water for PCR               | 5,2 | 10,4 | 15,6 | 20,8 | 26,0 | 31,2 | 36,4 | 41,6 | 46,8 | 52,0 | 57,2 | 62,4 | 67,6 | 72,8 |
| Number of samples           | 15  | 16   | 17   | 18   | 19   | 20   | 21   | 22   | 23   | 24   | 25   | 26   | 27   | 28   |

Instruction for use of the test system for detection of SARS-CoV-2 strain of coronavirus in biologic substrates with RT-PCR page 5 of 9

| SARS-CoV-2            | 15    | 16    | 17    | 18    | 19    | 20    | 21    | 22    | 23    | 24    | 25    | 26    | 27    | 28    |
|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| oligonucleotides      |       |       |       |       |       | 20    |       | 22    | 23    | 24    |       | 20    |       | 20    |
| PCR mixture           | 75    | 80    | 85    | 90    |       | 100   | 105   | 110   | 115   | 120   | 125   | 130   | 135   | 140   |
| Reverse transcriptase | 12,0  |       |       |       |       | _     |       |       |       | 19,2  |       |       |       |       |
| Water for PCR         | 78,0  | 83,2  | 88,4  | 93,6  | 98,8  |       |       | 114,4 | 119,6 | 124,8 | 130,0 | 135,2 | 140,4 | 145,6 |
| Number of samples     | 29    | 30    | 31    | 32    | 33    | 34    | 35    | 36    | 37    | 38    | 39    | 40    | 41    | 42    |
| SARS-CoV-2            | 29    | 30    | 31    | 32    | 33    | 34    | 35    | 36    | 37    | 38    | 39    | 40    | 41    | 42    |
| oligonucleotides      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| PCR mixture           | 145   | 150   | 155   | 160   |       | 170   |       | 180   | 185   | 190   |       | 200   | 205   | 210   |
| Reverse transcriptase | 23,2  | 24,0  |       |       | _     |       | 28,0  | 28,8  | 29,6  | 30,4  |       | 32,0  |       |       |
| Water for PCR         | 150,8 | 156,0 | 161,2 | 166,4 | 171,6 | 176,8 | 182,0 | 187,2 | 192,4 | 197,6 | 202,8 | 208,0 | 213,2 | 218,4 |
| Number of samples     | 43    | 44    | 45    | 46    | 47    | 48    | 49    | 50    | 51    | 52    | 53    | 54    | 55    | 56    |
| SARS-CoV-2            | 43    | 44    | 45    | 46    | 47    | 48    | 49    | 50    | 51    | 52    | 53    | 54    | 55    | 56    |
| oligonucleotides      |       |       |       |       |       |       | _     |       |       |       |       |       |       |       |
| PCR mixture           | 215   | 220   | 225   | 230   | 235   | 240   | 245   | 250   | 255   | 260   | 265   | 270   | 275   | 280   |
| Reverse transcriptase | 34,4  | 35,2  | 36,0  | ,     |       |       |       | 40,0  | ,     | 41,6  |       | 43,2  | 44,0  | 44,8  |
| Water for PCR         | 223,6 | 228,8 | 234,0 | 239,2 | 244,4 | 249,6 | 254,8 | 260,0 | 265,2 | 270,4 | 275,6 | 280,8 | 286,0 | 291,2 |
| Number of samples     | 57    | 58    | 59    | 60    | 61    | 62    | 63    | 64    | 65    | 66    | 67    | 68    | 69    | 70    |
| SARS-CoV-2            | 57    | 58    | 59    | 60    | 61    | 62    | 63    | 64    | 65    | 66    | 67    | 68    | 69    | 70    |
| oligonucleotides      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| PCR mixture           | 285   | 290   | 295   | 300   |       | 310   | 315   | 320   | 325   | 330   | 335   | 340   | 345   | 350   |
| Reverse transcriptase | 45,6  | ,     | ,     | 48,0  | ,     |       |       | 51,2  | 52,0  | 52,8  | ,     | 54,4  | 55,2  |       |
| Water for PCR         | 296,4 |       |       | 312,0 | ,     | 322,4 |       | 332,8 | 338,0 | 343,2 | 348,4 | ,     |       |       |
| Number of samples     | 71    | 72    | 73    | 74    | 75    | 76    | 77    | 78    | 79    | 80    | 81    | 82    | 83    | 84    |
| SARS-CoV-2            | 71    | 72    | 73    | 74    | 75    | 76    | 77    | 78    | 79    | 80    | 81    | 82    | 83    | 84    |
| oligonucleotides      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| PCR mixture           | 355   | 360   | 365   | 370   |       | 380   |       | 390   | 395   | 400   | 405   | 410   | 415   | 420   |
| Reverse transcriptase | 56,8  | 57,6  |       | ,     |       |       | 61,6  | 62,4  | 63,2  | 64,0  | 64,8  | 65,6  | 66,4  | 67,2  |
| Water for PCR         | 369,2 | 374,4 | 379,6 | 384,8 | 390,0 |       | 400,4 | 405,6 | 410,8 | 416,0 | 421,2 | 426,4 | 431,6 | 436,8 |
| Number of samples     | 85    | 86    | 87    | 88    | 89    | 90    | 91    | 92    | 93    | 94    | 95    | 96    | 97    | 98    |
| SARS-CoV-2            | 85    | 86    | 87    | 88    | 89    | 90    | 91    | 92    | 93    | 94    | 95    | 96    | 97    | 98    |
| oligonucleotides      |       |       |       |       |       |       | _     |       |       |       |       |       |       |       |
| PCR mixture           | 425   | 430   | 435   | 440   | 445   | 450   | 455   | 460   | 465   | 470   | 475   | 480   | 485   | 490   |
| Reverse transcriptase | 68,0  | ,     | ,     | ,     |       | 72,0  |       | 73,6  |       | 75,2  | 76,0  | 76,8  | 77,6  | 78,4  |
| Water for PCR         | 442,0 | 447,2 | 452,4 | 457,6 | 462,8 | 468,0 |       |       | 483,6 | 488,8 | 494,0 | 499,2 | 504,4 | 509,6 |
| Number of samples     | 99    | 100   | 101   | 102   | 103   | 104   | 105   | 106   | 107   | 108   | 109   | 110   |       |       |
| SARS-CoV-2            | 99    | 100   | 101   | 102   | 103   | 104   | 105   | 106   | 107   | 108   | 109   | 110   |       |       |
| oligonucleotides      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| PCR mixture           | 495   |       |       |       |       |       |       |       |       | 540   | 545   | 550   |       |       |
| Reverse transcriptase | 79,2  | ,     | 80,8  |       |       |       |       |       |       |       | ,     | 88,0  |       |       |
| Water for PCR         | 514,8 | 520,0 | 525,2 | 530,4 | 535,6 | 540,8 | 546,0 | 551,2 | 556,4 | 561,6 | 566,8 | 572,0 |       |       |

- 4. Prepare enough tubes to amplify the test samples, positive and negative controls and place them in a refrigerated stand.
- 5. Add 12  $\mu$ l of the working solution of the main reagent mixture to all tubes with test samples and controls.
- 6. Transfer  $8 \mu l$  of water for PCR to the negative control tube containing no samples and  $8 \mu l$  of positive control to the positive control tube.
  - 7. Add 8 µl of RNA samples to the appropriate tubes.
  - 8. Close the tubes with caps, strips, or ultratransparent film.

Instruction for use of the test system for detection of SARS-CoV-2 strain of coronavirus in biologic substrates with RT-PCR page 6 of 9

- 9. Shake (using shaker) and then displace the liquid to the bottom of the tubes using centrifuge for 10 seconds.
  - 10. Carefully place the prepared tubes in the thermal cycler, close the lid.
- 11. Run the PCR protocol setup following the manufacturer's recommendations, taking into account the differences in the settings of your instrument.

Create a new protocol or start the existing one. Target the moment of reading the data from the plate at the phase **annealing/elongation** at 59 °C. Indicate that the FAM (SARS-CoV-2) and HEX (endogenous internal control) channels should be used in this experiment. Indicate the used wells on the plate diagram. Type the name of the corresponding sample in each well.

Table 4. Amplification conditions for SARS-CoV-2 RNA detection.

| Step                                                            | Temperature | Time       | Number of repeats |
|-----------------------------------------------------------------|-------------|------------|-------------------|
| Reverse transcription                                           | 50 °C       | 20 minutes | 1                 |
| Activation of polymerase, inactivation of reverse transcriptase | 95 °C       | 3 minutes  | 1                 |
| Denaturation                                                    | 95 °C       | 15 seconds |                   |
| Annealing                                                       | 59 °C       | 20 seconds | 5                 |
| Elongation                                                      | 72 °C       | 10 seconds |                   |
| Denaturation                                                    | 95 °C       | 15 seconds |                   |
| Annealing and measuring of fluorescence                         | 59 °C       | 20 seconds | 40                |
| Elongation                                                      | 72 °C       | 10 seconds |                   |

Total time necessary for finishing of RT-PCR in accordance with this protocol is approximately 1 hour 30 minutes.

### Data analysis

Each cycle of RNA amplification leads to the generation of a fluorescent signal measured in FAM channel for target leads to the formation of a sigmoid melting curve. Data analysis should be performed in accordance with the recommendations of the equipment manufacturer using compatible software.

- 1. With a FAM Ct value less than 40, and a HEX Ct value less than 40, the sample contains fragments of the SARS-COV-2 genome (positive).
- 2. In the absence of (N/A) of Ct value on the FAM channel and Ct value on the HEX channel less than 40, the sample does not contain fragments of the SARS-COV-2 genome (negative).
- 3. With a FAM Ct value less than or equal to 20 and no HEX Ct value (N/A), the sample contains fragments of the SARS-COV-2 genome (positive).

Instruction for use of the test system for detection of SARS-CoV-2 strain of coronavirus in biologic substrates with RT-PCR page 7 of 9

- 4. If the FAM Ct value is more than 20, and the HEX Ct value is absent (N/A), it is necessary to repeat the RT-PCR of the sample, including two ten-fold dilutions. If in one of the samples sigmoid curves are found on the FAM and HEX channels, the sample contains fragments of the SARS-COV-2 genome (positive).
- 5. If there is no Ct value on the FAM (N/A) channel and no Ct value on the HEX (N/A) channel, the result is considered invalid. It is necessary to repeat the study of the sample, including the extraction step.

In case of getting ambiguous positive results there is possible instruments and/or working place contamination - decontamination measures in the laboratory should be carried out.

The set detection threshold level can significantly affect Ct values. Set up threshold levels in accordance with recommendations of the manufacturer.

#### **Solution of the problems**

Table 5. Possible Causes of Errors and their Solutions

| Problem                                                                                                     | Possible cause                                                                                                | Solution                                                                                           |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                             | Samples Issues                                                                                                |                                                                                                    |  |  |  |  |
| Inadequate purity of extracted RNA                                                                          | Contamination of RNA/DNA samples with protein salts, carbohydrates and other organic matters that inhibit PCR | Avoid phenolic and/or other extraction methods, use only the included nucleic acid extraction kit. |  |  |  |  |
|                                                                                                             | Pipetting Issues                                                                                              |                                                                                                    |  |  |  |  |
| A fluorescent signal was obtained from samples containing no DNA and/or from reagent contamination controls | Contamination of negative probes with amplicons                                                               | Repeat extraction and/or PCR with new reagents; decontaminate the instruments and working place.   |  |  |  |  |
| The total volume of the reaction mixture differs from 20 µl                                                 | Pipetting errors, for example, skipping or refilling cells                                                    | Use multichannel pipettes, automated pipetting or develop attention and concentration.             |  |  |  |  |
| Amplification Issues                                                                                        |                                                                                                               |                                                                                                    |  |  |  |  |
| Unusually high C <sub>T</sub> standard values and/or high RNA concentration in test                         | Invalid amplification protocol                                                                                | Check the equipment settings, follow the instructions from the device operation guide              |  |  |  |  |

Instruction for use of the test system for detection of SARS-CoV-2 strain of coronavirus in biologic substrates with RT-PCR page 8 of 9

| samples                                                                                                         | Nonobservance of storage                                                | Check storage conditions and                                                                                                                                          |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                 | conditions and/or expiry                                                | expiry date                                                                                                                                                           |  |  |  |
|                                                                                                                 | dates of the reagents                                                   | expiry date                                                                                                                                                           |  |  |  |
|                                                                                                                 | NA breakdown                                                            | Use nuclease-free supplies<br>and reagents; after synthesis,<br>immediately place RNA<br>samples on ice                                                               |  |  |  |
|                                                                                                                 | Frequent defrosting or                                                  | Read instruction, check                                                                                                                                               |  |  |  |
|                                                                                                                 | improper storage of                                                     | storage conditions, prepare                                                                                                                                           |  |  |  |
| Non-sigmoid shape of                                                                                            | dissoluted reagents mixture                                             | fresh reagents mixture.                                                                                                                                               |  |  |  |
| melting curves of concentration standards and tested samples                                                    | Storage conditions do not correspond to recommended, the set is expired | Check storage conditions and expiry date.                                                                                                                             |  |  |  |
|                                                                                                                 | Measuring of fluorescent signal is off, camera is improperly installed  | Check the equipment settings                                                                                                                                          |  |  |  |
| Absence of fluorescent signal                                                                                   | Incorrect channel of fluorescent signal recording has been chosen       | To identify RNA of the pathogen choose channel FAM. To define internal control choose channel HEX                                                                     |  |  |  |
|                                                                                                                 | Invalid amplification protocol                                          | Check the equipment settings                                                                                                                                          |  |  |  |
|                                                                                                                 | Nonobservance of storage conditions and/or expiry dates of the kit      | Check storage conditions and expiry date.                                                                                                                             |  |  |  |
| Different types of RNA amplification in test samples, unparalleled growth of curves in the exponential phase of | Excess PCR inhibitors in the sample                                     | Use the recommended extraction kit, exactly follow the manufacturer's instructions. Dilution of RNA before analysis can reduce the amount of inhibitors in the sample |  |  |  |
| the reaction                                                                                                    | Improperly collected material (e.g. heparinized blood)                  | Use correctly collected samples.                                                                                                                                      |  |  |  |

Instruction for use of the test system for detection of SARS-CoV-2 strain of coronavirus in biologic substrates with RT-PCR page 9 of 9

| A low level of<br>fluorescent signal is<br>registered in the process<br>of identifying RNA<br>amplification | Contamination of optical lenses                              | See "care" section for instructions on using the appropriate thermal cycler; if the design allows, wipe the lens once a month using absolute ethanol and cotton swabs.                                                              |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                             | Contamination of cooling system and/or optical sensor matrix | See the "care" section for instructions on using the appropriate thermal cycler; you can also fill each well of the sensor with isopropanol, incubate for 10 minutes at 50 °C, remove isopropanol and rinse with bidistilled water. |